资源类型

期刊论文 1701

年份

2024 3

2023 139

2022 162

2021 137

2020 145

2019 124

2018 105

2017 116

2016 77

2015 90

2014 55

2013 44

2012 38

2011 45

2010 48

2009 51

2008 59

2007 69

2006 49

2005 34

展开 ︾

关键词

遗传算法 9

优化 7

神经网络 7

可持续发展 5

多目标优化 4

机器学习 4

目标识别 4

预测 4

BP神经网络 3

COVID-19 3

人工智能 3

数值模拟 3

算法 3

CAN总线 2

Cu(In 2

GIS 2

GPS 2

HY-2 2

展开 ︾

检索范围:

排序: 展示方式:

Fabrication of Si-based three-dimensional microbatteries: A review

Chuang YUE, Jing LI, Liwei LIN

《机械工程前沿(英文)》 2017年 第12卷 第4期   页码 459-476 doi: 10.1007/s11465-017-0462-x

摘要:

High-performance, Si-based three-dimensional (3D) microbattery systems for powering micro/nano-electromechanical systems and lab-on-chip smart electronic devices have attracted increasing research attention. These systems are characterized by compatible fabrication and integratibility resulting from the silicon-based technologies used in their production. The use of support substrates, electrodes or current collectors, electrolytes, and even batteries used in 3D layouts has become increasingly important in fabricating microbatteries with high energy, high power density, and wide-ranging applications. In this review, Si-based 3D microbatteries and related fabrication technologies, especially the production of micro-lithium ion batteries, are reviewed and discussed in detail in order to provide guidance for the design and fabrication.

关键词: three-dimensional (3D)     wafer-scale     Si-based anode     micro-LIBs     thin-film deposition    

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

《能源前沿(英文)》 2019年 第13卷 第4期   页码 626-635 doi: 10.1007/s11708-019-0650-y

摘要: Single wall carbon nanotube (SWCNT) additives were formulated into µm-Si-graphite composite electrodes and tested in both half cells and full cells with high nickel cathodes. The critical role of small amount of SWCNT addition (0.2 wt%) was found for significantly improving delithiation capacity, first cycle coulombic efficiency (FCE), and capacity retention. Particularly, Si (10 wt%)-graphite electrode exhibits 560 mAh/g delithiation capacity and 92% FCE at 0.2 C during the first charge-discharge cycle, and 91% capacity retention after 50 cycles (0.5 C) in a half cell. Scanning electron microscope (SEM) was used to illustrate the electrode morphology, compositions and promoting function of the SWCNT additives. In addition, full cells assembled with high nickel-NCM811 cathodes and µm-Si-graphite composite anodes were evaluated for the consistence between half and full cell performance, and the consideration for potential commercial application. Finally, criteria to assess Si-containing anodes are proposed and discussed from an industrial perspective.

关键词: lithium-ion battery     Si anode     Si-graphite composite     single wall carbon nanotube (SWCNT)     NCM811    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performanceanode for lithium-ion battery

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1231-1243 doi: 10.1007/s11705-023-2306-z

摘要: The cycling stability of SnO2 anode as lithium-ion battery is poor due to volume expansion. Polyimide coatings can effectively confine the expansion of SnO2. However, linear polyimides are easily dissolved in ester electrolytes and their carbonyls is not fully utilized during charging/discharging process. Herein, the SnO2 enclosed with anthraquinone-based polyimide/reduced graphene oxide composite was prepared by self-assembly. Carbonyls from the anthraquinone unit provide fully available active sites to react with Li+, improving the utilization of carbonyl in the polyimide. More exposed carbonyl active sites promote the conversion of Sn to SnO2 with electrode gradual activation, leading to an increase in reversible capacity during the charge/discharge cycle. In addition, the introduction of reduced graphene oxide cannot only improve the stability of polyimide in the electrolyte, but also build fast ion and electron transport channels for composite electrodes. Due to the multiple effects of anthraquinone-based polyimide and the synergistic effect of reducing graphene oxide, the composite anode exhibits a maximum reversible capacity of 1266 mAh·g−1 at 0.25 A·g−1, and maintains an excellent specific capacity of 983 mAh·g−1 after 200 cycles. This work provides a new strategy for the synergistic modification of SnO2.

关键词: anthraquinone-based polyimide     multi-effect     tin dioxide     reduced graphene oxide     lithium-ion battery    

controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/rGO composites as high-performance anode

Cehuang FU, Shuiyun SHEN, Ruofei WU, Xiaohui YAN, Guofeng XIA, Junliang ZHANG

《能源前沿(英文)》 2022年 第16卷 第4期   页码 607-612 doi: 10.1007/s11708-021-0798-0

摘要: In this paper, a facile strategy is proposed to controllably synthesize mesoporous Li4Ti5O12/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li4Ti5O12 (LTO) precursor, GO, and phenolic resin. The obtained composites, which consists of a LTO core, a phenolic-resin-based carbon shell, and a porous frame constructed by rGO, can be denoted as LTO/C/rGO and presents a hierarchical structure. Owing to the advantages of the hierarchical structure, including a high surface area and a high electric conductivity, the mesoporous LTO/C/rGO composite exhibits a greatly improved rate capability as the anode material in contrast to the conventional LTO electrode.

关键词: Li4Ti5O12     phenolic-resin-based carbon     mesoporous composite     graphene    

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 85-91 doi: 10.1007/s11708-016-0437-3

摘要: The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage ( ) of up to 0.732 V.

关键词: PECVD     high pressure and high power     a-Si:H microstructure     passivation     heterojunction solar cell    

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

《能源前沿(英文)》 2023年 第17卷 第5期   页码 569-584 doi: 10.1007/s11708-023-0875-7

摘要: Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

关键词: lithium (Li)-ion battery (LIB)     Li metal battery     three-dimensional (3D) composite Li metal anode     mechanical modification     reducing local current density    

Synthesis and anticancer activity of (+)-nopinone-based 2-amino-3-cyanopyridines

Shengliang LIAO,Shibin SHANG,Minggui SHEN,Xiaoping RAO,Hongyan SI,Jie SONG,Zhanqian SONG

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 335-340 doi: 10.15302/J-FASE-2015079

摘要: Twelve (+)-nopinone-based 2-amino-3-cyanopyridines 4a–l were synthesized from (–)-β-pinene. The structures of these compounds were characterized by FT-IR, H NMR, and ESI-MS. All the compounds were tested for their anticancer activity against lung cancer cell line A549, gastric cancer cell line MKN45 and breast cancer cell line MCF7 by MTT method, respectively. The results showed that compounds 4f, 4j and 4k had promising anticancer activity against these cancer cell lines, in particular, compound 4f exhibited broad-spectrum and highly efficient anticancer activity against cell lines A549, MKN45 and MCF7 with IC of 23.78, 67.61 and 53.87 µmol·L , respectively. The preliminary analysis of the structure activity relationship implied that the Br or Cl substituted group of the benzene ring in these derivatives significantly contributed to the anticancer activity.

关键词: b-pinene     nopinone     synthesis     2-amino-3-cyanopyridine     anticancer    

碳基燃料SOFC阳极材料研究进展

孙春文,孙杰,杨伟,马朝晖,李 帅,仙存妮, 王少飞,肖睿娟,施思齐,李 泓,陈立泉

《中国工程科学》 2013年 第15卷 第2期   页码 77-87

摘要:

固体氧化物燃料电池(SOFCs)是一类可以将燃料气体的化学能以高效而环境友好的方式直接转化为电能的电化学反应器。最近的研究趋势是发展可以直接电化学氧化碳氢化合物燃料(如天然气)的电池,但是使用碳氢化合物作为燃料时,目前最常使用的镍-氧化钇稳定的氧化锆(Ni/YSZ)金属陶瓷阳极材料具有易积碳和硫中毒的缺点。因此,研究在燃料气氛下具有混合离子-电子电导的替代阳极材料显得尤为必要。综述了以碳基燃料工作的SOFCs阳极材料研究的一些进展,并展望本领域在未来的发展趋势。

关键词: 固体氧化物燃料电池     阳极材料     碳基燃料     抗积碳     抗硫    

Algal biomass derived biochar anode for efficient extracellular electron uptake from

Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1072-5

摘要:

Algal biochar anode produced higher biocurrent compared with graphite plate anode.

Algal biochar exhibited stronger electrochemical response to redox mediators.

Algal biochar showed excellent adsorption to redox mediators.

关键词: Algal biochar     Anode material     Electrochemical activity     Extracellular electron transport     Waste resource utilization    

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its

《化学科学与工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11705-023-2376-y

摘要: Biomass-derived carbon materials for lithium-ion batteries emerge as one of the most promising anodes from sustainable perspective. However, improving the reversible capacity and cycling performance remains a long-standing challenge. By combining the benefits of K2CO3 activation and KMnO4 hydrothermal treatment, this work proposes a two-step activation method to load MnO2 charge transfer onto biomass-derived carbon (KAC@MnO2). Comprehensive analysis reveals that KAC@MnO2 has a micro-mesoporous coexistence structure and uniform surface distribution of MnO2, thus providing an improved electrochemical performance. Specifically, KAC@MnO2 exhibits an initial charge-discharge capacity of 847.3/1813.2 mAh·g–1 at 0.2 A·g–1, which is significantly higher than that of direct pyrolysis carbon and K2CO3 activated carbon, respectively. Furthermore, the KAC@MnO2 maintains a reversible capacity of 652.6 mAh·g–1 after 100 cycles. Even at a high current density of 1.0 A·g–1, KAC@MnO2 still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g–1 after 500 cycles. Compared with reported biochar anode materials, the KAC@MnO2 prepared in this work shows superior reversible capacity and cycling performance. Additionally, the Li+ insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the charge-discharge process, helping us better understand the energy storage mechanism of KAC@MnO2.

关键词: biomass-derived carbon     MnO2     lithium-ion batteries     anode material     high reversible capacity    

中国铝工业应用新型电极材料的研究与展望

邱竹贤

《中国工程科学》 2001年 第3卷 第5期   页码 50-54

摘要:

介绍了现代铝工业上新近开发研制的几种电极材料,涉及惰性阴极、惰性阳极、双极性电极等;还研制了低温电解质,使电解温度降低到800~900℃。如果惰性电极与低温电解质配合起来应用,则能够明显减少工业铝生产中的物料消耗,节省电能,增大电解槽生产能力,并改善环境状况,可望大幅度降低生产成本。

关键词: 惰性阳极     惰性阴极     SiC绝缘侧壁     低温铝电解    

Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction

Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU

《能源前沿(英文)》 2017年 第11卷 第1期   页码 92-95 doi: 10.1007/s11708-016-0432-8

摘要: Double-layer emitters with different doping concentrations (DLE) have been designed and prepared for amorphous silicon/crystalline silicon (α-Si:H/c-Si) heterojunction solar cells. Compared with the traditional single layer emitter, both the experiment and the simulation (AFORS-HET, http://www.paper.edu.cn/html/releasepaper/2014/04/282/) prove that the double-layer emitter increases the short circuit current of the cells significantly. Based on the quantum efficiency (QE) results and the current-voltage-temperature analysis, the mechanism for the experimental results above has been investigated. The possible reasons for the increased current include the enhancement of the QE in the short wavelength range, the increase of the tunneling probability of the current transport and the decrease of the activation energy of the emitter layers.

关键词: double-layer emitter     α-Si:H/c-Si heterojunction solar cell     short circuit current     quantum efficiency     current-voltage-temperature    

Stability and dynamics of rotor system with 45° slant crack on shaft

Yanli LIN, Xiaohui SI, Fulei CHU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 203-213 doi: 10.1007/s11465-011-0131-4

摘要:

Crack on a shaft is one of the common damages in a rotor system. In this paper, transverse vibrations are calculated to compare the influences of transverse crack and slant crack on the rotor system. Results show that the vibration amplitude of the rotor system with a 45° slant crack on the shaft is larger than that with a transverse crack when the two types of crack have the same depth and the rotor system runs in the same condition. Stability and dynamic characteristics of the rotor system with a 45° slant crack on the shaft under torsional excitation are analyzed by considering opening and closing of the crack. It is shown that the instability of the transverse vibration of the rotor system increases with increasing difference between the bending stiffness in two main directions, and the vibration is stable when the two bending stiffness are identical. The spectrum analysis of the steady-state response reveals that the gravity and the eccentricity produce different frequency components, and when the two bending stiffness are identical, the multiple frequency components of the torsional excitation disappear. Further investigation shows that the vibration amplitudes in combined frequencies increase rapidly in transversal, torsional, and axial vibration with increasing slant crack depth. The results are helpful for the understanding the dynamic behavior of a rotor system with a slant crack on a shaft and can be used for the detection of the slant crack on a shaft.

关键词: rotor dynamics     slant crack     stability     torsional excitation     open and close    

21世纪伊始铝电解工业的新进展

邱竹贤

《中国工程科学》 2003年 第5卷 第4期   页码 41-46

摘要:

21世纪伊始,法国500kA特大型预焙阳极电解槽,以及中国320 kA大型电解槽的出现,标志着铝电解工业的重要新进展。文章从理论上分析了大型电解槽的优越性,论述了减少电解槽的热损失系数,即减少按单位电量核算的热损失量,便是大型槽能够节省电能的理论基础;应用低温铝电解和惰性电极是铝电解工业今后的发展方向。

关键词: 铝电解工业     大型电解槽     低温铝电解     惰性阳极和惰性阴极    

标题 作者 时间 类型 操作

Fabrication of Si-based three-dimensional microbatteries: A review

Chuang YUE, Jing LI, Liwei LIN

期刊论文

Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries

Jingning SHAN, Xiaofang YANG, Chao YAN, Yiguang JU, Lin CHEN, Fang ZHAO

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Multi-effect anthraquinone-based polyimide enclosed SnO/reduced graphene oxide composite as high-performanceanode for lithium-ion battery

期刊论文

controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/rGO composites as high-performance anode

Cehuang FU, Shuiyun SHEN, Ruofei WU, Xiaohui YAN, Guofeng XIA, Junliang ZHANG

期刊论文

Plasma enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

期刊论文

Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries

期刊论文

Synthesis and anticancer activity of (+)-nopinone-based 2-amino-3-cyanopyridines

Shengliang LIAO,Shibin SHANG,Minggui SHEN,Xiaoping RAO,Hongyan SI,Jie SONG,Zhanqian SONG

期刊论文

碳基燃料SOFC阳极材料研究进展

孙春文,孙杰,杨伟,马朝晖,李 帅,仙存妮, 王少飞,肖睿娟,施思齐,李 泓,陈立泉

期刊论文

Algal biomass derived biochar anode for efficient extracellular electron uptake from

Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu

期刊论文

Preparation of biomass-derived carbon loaded with MnO as lithium-ion battery anode for improving its

期刊论文

中国铝工业应用新型电极材料的研究与展望

邱竹贤

期刊论文

Analysis of the double-layer α-Si:H emitter with different doping concentrations for α-Si:H/c-Si heterojunction

Haibin HUANG,Gangyu TIAN,Tao WANG,Chao GAO,Jiren YUAN,Zhihao YUE,Lang ZHOU

期刊论文

Stability and dynamics of rotor system with 45° slant crack on shaft

Yanli LIN, Xiaohui SI, Fulei CHU

期刊论文

21世纪伊始铝电解工业的新进展

邱竹贤

期刊论文